Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2164.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
  <head>
    <title>UTas ePrints - Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies</title>
    <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
    <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
    <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
    <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
    <link rel="Top" href="http://eprints.utas.edu.au/" />
    <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
    <meta content="Arndt, Carolin E." name="eprints.creators_name" />
<meta content="Swadling, Kerrie M." name="eprints.creators_name" />
<meta content="" name="eprints.creators_id" />
<meta content="k.swadling@utas.edu.au" name="eprints.creators_id" />
<meta content="Southward, A.J." name="eprints.editors_name" />
<meta content="Sims, D.W." name="eprints.editors_name" />
<meta content="book_section" name="eprints.type" />
<meta content="2007-10-18 03:00:28" name="eprints.datestamp" />
<meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
<meta content="show" name="eprints.metadata_visibility" />
<meta content="Crustacea in Arctic and Antarctic
Sea Ice: Distribution, Diet and
Life History Strategies" name="eprints.title" />
<meta content="pub" name="eprints.ispublished" />
<meta content="270702" name="eprints.subjects" />
<meta content="restricted" name="eprints.full_text_status" />
<meta content="The definitive version is available online at http://www.sciencedirect.com/" name="eprints.note" />
<meta content="This review concerns crustaceans that associate with sea ice. Particular
emphasis is placed on comparing and contrasting the Arctic and Antarctic
sea ice habitats, and the subsequent influence of these environments on the
life history strategies of the crustacean fauna. Sea ice is the dominant feature
of both polar marine ecosystems, playing a central role in physical processes
and providing an essential habitat for organisms ranging in size from viruses to
whales. Similarities between the Arctic and Antarctic marine ecosystems include
variable cover of sea ice over an annual cycle, a light regimen that can extend
from months of total darkness to months of continuous light and a pronounced
seasonality in primary production. Although there are many similarities, there
are also major diVerences between the two regions: The Antarctic experiences
greater seasonal change in its sea ice extent, much of the ice is over very deep
water and more than 80% breaks out each year. In contrast, Arctic sea ice often
covers comparatively shallow water, doubles in its extent on an annual cycle and
the ice may persist for several decades. Crustaceans, particularly copepods and
amphipods, are abundant in the sea ice zone at both poles, either living within the
brine channel system of the ice-crystal matrix or inhabiting the ice–water
interface. Many species associate with ice for only a part of their life cycle,
while others appear entirely dependent upon it for reproduction and development.
Although similarities exist between the two faunas, many diVerences are
emerging. Most notable are the much higher abundance and biomass of Antarctic
copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids,
the high euphausiid biomass in Southern Ocean waters and the lack of any
species that appear fully dependent on the ice. In the Arctic, the ice-associated
fauna is dominated by amphipods. Calanoid copepods are not tightly associated
with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are
nearly absent from the high Arctic. Life history strategies are variable, although
reproductive cycles and life spans are generally longer than those for temperate
congeners. Species at both poles tend to be opportunistic feeders and periods of
diapause or other reductions in metabolic expenditure are not uncommon." name="eprints.abstract" />
<meta content="2006" name="eprints.date" />
<meta content="published" name="eprints.date_type" />
<meta content="51" name="eprints.volume" />
<meta content="Elsevier" name="eprints.publisher" />
<meta content="197-315" name="eprints.pagerange" />
<meta content="10.1016/S0065-2881(06)51004-1" name="eprints.id_number" />
<meta content="TRUE" name="eprints.refereed" />
<meta content="Advances in Marine Biology" name="eprints.book_title" />
<meta content="http://dx.doi.org/10.1016/S0065-2881(06)51004-1" name="eprints.official_url" />
<meta content="Aarset, A. V. (1987). AMERIEZ 1986: Under-ice fauna from the Weddell Sea—
responses to low temperature and osmotic stress. Antarctic Journal of the United
States 22, 170–171.
Aarset, A. V. (1991). The ecophysiology of under-ice fauna. Polar Research 10,
309–324.
Aarset, A. V. and Aunaas, T. (1987). Osmotic responses to hyposmotic stress in the
amphipods Gammarus wilkitzkii, Onisimus glacialis and Parathemisto libellula from
Arctic waters. Polar Biology 7, 189–193.
Aarset, A. V. and Aunaas, T. (1990). Metabolic responses of the sympagic amphipods
Gammarus wilkitzkii and Onisimus glacialis to acute temperature variations.
Marine Biology 107, 433–438.
SEA ICE CRUSTACEA 295
Aarset, A. V. and Torres, J. J. (1989). Cold resistance and metabolic responses to
salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia
superba. Polar Biology 9, 491–497.
Aarset, A. V. and Zachariassen, K. E. (1988). Low temperature tolerance and
osmotic regulation of the amphipod Gammarus oceanicus from Spitsbergen waters.
Polar Research 6, 35–41.
Abu-Rezq, T. W., Yule, A. B. and Teng, S. K. (1997). Ingestion, fecundity, growth
rates and culture of the harpacticoid copepod, Tisbe furcata, in the laboratory.
Hydrobiologia 347, 109–118.
Ackley, S. F. and Sullivan, C. W. (1994). Physical controls on the development and
characteristics of Antarctic sea ice biological communities—a review and synthesis.
Deep-Sea Research I 41, 1583–1604.
Albers, C. S., Kattner, G. and Hagen, W. (1996). The composition of wax esters,
triacylglycerols and phospholipids in Arctic and Antarctic copepods: Evidence of
energetic adaptations. Marine Chemistry 55, 347–358.
Andriashev, A. P. (1968). The problem of the life community associated with the
Antarctic fast ice. In ‘‘Symposium on Antarctic Oceanography’’ (R. I. Currie, ed.),
pp. 147–155. W HeVer &amp; Son, Cambridge.
Arndt, C. E. (2002). Feeding ecology of the Arctic ice-amphipod Gammarus
wilkitzkii—physiological, morphological and ecological studies. Reports on Polar
and Marine Research 405, 1–74.
Arndt, C. E. (2004). Ecosystem dynamics in arctic sea ice: The impact of physical and
biological processes on the occurrence and distribution of sympagic amphipods.
Ph.D. Thesis, University Centre on Svalbard, Norway.
Arndt, C. E. and Beuchel, F. (2006). Life cycle and population dynamics of the Arctic
sympagic amphipods Onisimus nanseni SARS and O. glacialis SARS (Grammaridea:
Lysianassidae). Polar Biology 29, 239–248.
Arndt, C. E. and Pavlova, O. (2005). Origin and fate of ice fauna in the Fram Strait
and Svalbard area. Marine Ecology Progress Series 301, 55–66.
Arndt, C. E., Kanapathippillai, P., Kluge, R. and Krapp, R. (2000). Abundance of
sympagic amphipods north of Svalbard considering the ice conditions. In ‘‘Report
of AB-310 Course at UNIS 2000’’ (O. J. Lnne, ed.), pp. 1–23. Longyearbyen.
Available at www.unis.no.
Arndt, C. E., Fernandez-Leborans, G., Seuthe, L., Berge, J. and Gulliksen, B.
(2005a). Ciliated epibionts on the Arctic sympagic amphipod Gammarus wilkitzkii
benthic coupling. Marine Biology 147, 643–652.
Arndt, C. E., Berge, J. and Brandt, A. (2005b). Mouthpart-atlas of Arctic sympagic
amphipods—trophic niche separation based on mouthpart morphology and feeding
ecology. Journal of Crustacean Biology 25, 401–412.
Arrigo, K. R. (2003). Primary production in sea ice. In ‘‘Sea Ice: An Introduction to Its
Physics, Chemistry, Biology and Ecology’’ (D. N. Thomas and G. S. Dieckmann,
eds), pp. 143–183. Blackwell Publishing, Oxford.
Atkinson, A. (1998). Life cycle strategies of epipelagic copepods in the Southern
Ocean. Journal of Marine Systems 15, 289–311.
Atkinson, A. and Sny¨der, R. (1997). Krill-copepod interactions at South Georgia,
Antarctica, I. Omnivory by Euphausia superba. Marine Ecology Progress Series
160, 63–76.
Atkinson, A., Meyer, B., Stu¨bing, D., Hagen, W., Schmidt, K. and Bathmann, U. V.
(2002). Feeding and energy budgets of Antarctic krill Euphausia superba at the
onset of winter—II. Juveniles and adults. Limnology and Oceanography 47,
953–966.
296 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Atkinson, A., Siegel, V., Pakhomov, E. and Rothery, P. (2004). Long-term
decline in krill stock and increase in salps within the Southern Ocean. Nature
432, 100–103.
Auel, H. and Werner, I. (2003). Feeding, respiration and life history of the hyperiid
amphipod Themisto libellula in the Arctic marginal ice zone of the Greenland Sea.
Journal of Experimental Marine Biology and Ecology 296, 183–197.
Auel, H., Harjes, M., da Rocha, R., Stu¨bing, D. and Hagen, W. (2002). Lipid
biomarkers indicate diVerent ecological niches and trophic relationships of the
Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology 25,
374–383.
Auel, H., Klages, M. and Werner, I. (2003). Respiration and lipid content of the
Arctic copepod Calanus hyperboreus overwintering 1 m above seafloor at 2300 m
water depth in the Fram Strait. Polar Biology 143, 275–282.
Averintzev, V. G. (1993). Cryopelagic life at Franz Josef Land. In ‘‘Environment
and Ecosystems of the Frans Josef Land (Archipelago and Shelf)’’ pp. 171–186.
Apatity, Kola Scientific Center, Russian Academy of Science.
Barnard, J. L. (1959). Epipelagic and under-ice Amphipoda of the central Arctic
Basin. Scientific Studies at Fletcher’s Ice Island T-3, 1952–1955. Geophysical
Research Paper 63, 115–153.
Bates, S. S. (2004). Amnesic shellfish poisoning: Domoic acid production by Pseudonitzschia
diatoms. Aqua Info Aquaculture Notes 16, 1–4.
Bathmann, U. V., Makarov, R. R., Spiridonov, V. A. and Rohardt, G. (1993).
Winter distribution and overwintering strategies of the Antarctic copepod species
Calanoides acutus, Rhincalanus gigas and Calanus propinquus (Crustacea,
Calanoida) in the Weddell Sea. Polar Biology 13, 333–346.
Bayly, I. A. E. (1978). The occurrence of Paralabidocera antarctica (I. C. Thompson)
(Copepoda: Calanoida: Acartiidae) in an Antarctic saline lake. Australian Journal
of Marine and Freshwater Research 29, 817–824.
Bergmans, M., Dahms, H.-U. and Schminke, H. K. (1991). An r-strategist in
Antarctic pack ice. Oecologia 86, 305–309.
Beuchel, F. and Lnne, O. J. (2002). Population dynamics of the sympagic amphipods
Gammarus wilkitzkii and Apherusa glacialis in sea ice north of Svalbard. Polar
Biology 25, 241–250.
Beuchel, F., Borga° , K., Karlsson, S. and Lillekdal, G. (1998). Distribution
of the sympagic fauna at three diVerent locations north of Svalbard. In ‘‘Report
of AB-310 course at UNIS 1998’’ (O. J. Lnne, ed.), pp. 1–31. Longyearbyen.
Available at www.unis.no.
Birula, A. A. (1937). Beitra¨ge zur Kenntnis der Crustaceen-Fauna des Kara-Busens
und des Unterlaufes des Flusses Kara. Travaux de l’Institute Zoologique de l’Acade
´mie des Sciences de l’URSS 4, 701–747.
Blome, D. and Riemann, F. (1999). Antarctic sea ice nematodes, with description of
Geomonhystera glaciei sp. nov. (Monhysteridae). Mitteilung des Hamburgischen
Zoologischen Museum Instituts 96, 15–20.
Boysen-Ennen, E. and Piatkowski, U. (1988). Meso- and macrozooplankton communities
in the Weddell Sea, Antarctica. Polar Biology 9, 17–35.
Boysen-Ennen, E., Hagen, W., Hubold, G. and Piatkowski, U. (1991). Zooplankton
biomass in the ice-covered Weddell Sea, Antarctica. Marine Biology 111, 227–235.
Bradford, J. M. (1978). Sea ice organisms and their importance to the Antarctic
ecosystem (Review). Antarctic Record 1, 43–50.
Bradstreet, M. S. W. (1982). Occurrence, habitat use, and behavior of seabirds,
marine mammals, and arctic cod at the Pond Inlet ice edge. Arctic 35, 28–40.
SEA ICE CRUSTACEA 297
Bradstreet, M. S. W. and Cross, W. E. (1982). Trophic relationships at high Arctic ice
edges. Arctic 35, 1–12.
Brierley, A. S. and Thomas, D. N. (2002). Ecology of Southern Ocean pack ice.
Advances in Marine Biology 43, 171–277.
Brierley, A. S., Demer, D. A., Watkins, J. L. and Hewitt, R. P. (1999). Concordance
of interannual fluctuations in acoustically estimated densities of Antarctic krill
around South Georgia and Elephant Island: Biological evidence of same-year
teleconnections across the Scotia Sea. Marine Biology 134, 675–681.
Brierley, A. S., Fernandez, P. G., Brandon, M. A., Armstrong, F., Millard, N. W.,
McPhail, S. D., Stevenson, P., Pebody, M., Perrett, J., Squires, M., Bone, D. G.
and GriYths, G. (2002). Antarctic krill under sea ice: Elevated abundance in a
narrow band just south of ice edge. Science 295, 1890–1892.
Brinton, E. and Townsend, A. W. (1991). Development rates and habitat shifts in the
Antarctic neritic euphausiid Euphausia crystallorophias, 1986–87. Deep Sea Research
38, 1195–1211.
Brodsky, K. A. and Zvereva, J. A. (1976). Paralabidocera separabilis sp. n. and
P. antarctica (J. C. Thompson) (Copepoda, Calanoida) from Antarctica. Crustaceana
31, 233–240.
Budd, W. F. and Wu, X. (1998). Modelling long term global and Antarctic
changes resulting from increased greenhouse gases. In ‘‘Coupled Climate Modelling’’
(P. J. Meighen, ed.), Bureau of Meteorology, Canberra. Australia, Research
Report 69, 71–74.
Bunt, J. S. (1963). Diatoms of Antarctic sea ice as agents of primary production.
Nature 199, 1255–1257.
Bunt, J. S. and Wood, E. J. F. (1963). Microalgae and Antarctic sea-ice. Nature 199,
1254–1255.
Burghart, S. E., Hopkins, T. L., Vargo, G. A. and Torres, J. J. (1999). EVects of a
rapidly receding ice edge on the abundance, age structure and feeding of three
dominant calanoid copepods in the Weddell Sea, Antarctica. Polar Biology 22,
279–288.
Cairns, A. A. (1967). The zooplankton of Tanquary Fjord, Ellesmere Island, with
special reference to the calanoid copepods. Journal of the Fisheries Research Board
of Canada 24, 555–568.
Carey, A. G., Jr. (1985). Marine ice fauna: Arctic. In ‘‘Sea Ice Biota’’ (R. A. Horner,
ed.), pp. 173–190. CRC Press, Florida.
Carey, A. G., Jr. (1992). The ice fauna in the shallow southwestern Beaufort Sea,
Arctic Ocean. Journal of Marine Systems 3, 225–236.
Carey, A. G., Jr. and Montagna, P. A. (1982). Arctic sea ice faunal assemblage: First
approach to description and source of the underice meiofauna. Marine Ecology
Progress Series 8, 1–8.
Comiso, J. C. (2002). A rapidly declining perennial sea ice cover in the Arctic.
Geophysical Research Letters 29, 17.1–17.4.
Comiso, J. C. (2003). Large-scale characteristics and variability of the global sea ice
cover. In ‘‘Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Ecology’’
(D. N. Thomas and G. S. Dieckmann, eds), pp. 112–142. Blackwell Publishing,
Oxford.
Conover, R. J. and Huntley, M. (1991). Copepods in ice-covered seas—distribution,
adaptations to seasonally limited food, metabolism, growth patterns and life cycle
strategies in polar seas. Journal of Marine Systems 2, 1–41.
Conover, R. J. and Siferd, T. D. (1993). Dark-season survival strategies of coastal
zone zooplankton in the Canadian Arctic. Arctic 4, 303–311.
298 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Conover, R. J., Herman, A. W., Preusenberg, S. S. and Harris, L. R. (1986).
Distribution of and feeding by the copepod Pseudocalanus under fast ice during
the arctic spring. Science 232, 1245–1247.
Conover, R. J., Bedo, A. W., Hermann, A. W., Head, E. J. H., Harris, L. R. and
Horne, E. P. W. (1988). Never trust a copepod—some observations on their
behaviour in the Canadian Arctic. Bulletin of Marine Science 43, 650–662.
Conover, R. J., Harris, L. R. and Bedo, A. W. (1991). Copepods in cold oligotrophic
waters—how do they cope? Bulletin of the Plankton Society of Japan 38,
177–199.
Corkett, C. J. and McLaren, I. A. (1978). The biology of Pseudocalanus. Advances in
Marine Biology 15, 1–231.
Costanzo, G., Zagami, G., Crescenti, N. and Granata, A. I. (2002). Naupliar development
of Stephos longipes (Copepoda: Calanoida) from the annual sea ice of
Terra Nova Bay, Antarctica. Journal of Crustacean Biology 22, 855–860.
Cota, G., Legendre, L., Gosselin, M. and Ingram, R. G. (1991). Ecology of bottom
ice algae: I. Environmental controls and variability. Journal of Marine Systems 2,
257–278.
Cross, W. E. (1982). Under-ice biota at the Pond Inlet ice edge and in adjacent fast ice
areas during spring. Arctic 35, 13–27.
Dahms, H.-U. and Schminke, H. K. (1992). Sea ice inhabiting Harpacticoida (Crustacea,
Copepoda) of the Weddell Sea (Antarctica). Bulletin de l’Institute Royal des
Sciences naturelles de Belgique 62, 91–123.
Dahms, H.-U. and Quian, P.-Y. (2004). Life histories of the Harpacticoida (Copepoda,
Crustacea): A comparison with meiofauna and macrofauna. Journal of
Natural History 38, 1725–1734.
Dahms, H.-U., Bergmans, M. and Schminke, H. K. (1990). Distribution and adaptations
of sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell
Sea (Antarctica). Marine Ecology 11, 207–226.
Dalpadado, P., Borkner, N., Bogstad, B. and Mehl, S. (2001). Distribution of
Themisto (Amphipoda) spp. in the Barents Sea and predator–prey interactions.
Journal of Marine Science 58, 876–895.
Daly, K. L. (1990). Overwintering development, growth, and feeding of larval
Euphausia superba in the Antarctic marginal ice zone. Limnology and Oceanography
35, 1564–1576.
Daly, K. L. (2004). Overwintering, growth and development of larval Euphausia
superba: An interannual comparison under varying environmental conditions
west of the Antarctic Peninsula. Deep-Sea Research II 51, 2139–2168.
Daly, K. L. and Macaulay, M. C. (1991). Influence of physical and biological mesoscale
dynamics on the seasonal distribution and behaviour of Euphausia superba in
the Antarctic marginal ice zone. Marine Ecology Progress Series 79, 37–66.
Dauby, P., Scailteur, Y. and De Broyer, C. (2001). Trophic diversity within the
eastern Weddell Sea amphipod community. Hydrobiologia 443, 69–86.
De Broyer, C., Scailteur, Y., Chapelle, G. and Rauschert, M. (2001). Diversity of
epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea. Polar
Biology 24, 744–753.
de la Mare, W. K. (1997). Abrupt mid-twentieth-century decline in Antarctic sea-ice
extent from whaling records. Nature 389, 57–60.
Delgado, J. R., Jan˜ a, R. and Marin, V. (1998). Testing hypotheses on life-cycle
models for Antarctic calanoid copepods, using qualitative, winter, zooplankton
samples. Polar Biology 20, 74–76.
SEA ICE CRUSTACEA 299
Demers, S., Legendre, L., Maestrini, S., Rochet, M. and Ingram, R. G. (1989).
Nitrogenous nutrition of sea-ice microalgae. Polar Biology 9, 377–383.
Dhargalkar, V. K., Burton, H. R. and Kirkwood, J. M. (1988). Animal associations
with the dominant species of shallow water macrophytes along the coastline of the
Vestfold Hills, Antarctica. Hydrobiologia 165, 141–150.
Dieckmann, G. S. and Hellmer, H. H. (2003). The importance of sea ice: An
overview. In ‘‘Sea Ice: An introduction to Its Physics, Chemistry, Biology and
Ecology’’ (D. N. Thomas and G. S. Dieckmann, eds), pp. 1–22. Blackwell
Publishing, Oxford.
Dieckmann, G. S., Arrigo, K. R. and Sullivan, C. W. (1992). A high-resolution
sampler for nutrient and chlorophyll a profiles of the sea ice platelet layer and
underlying water column below fast ice in polar oceans: Preliminary results.
Marine Ecology Progress Series 80, 291–300.
Diel, S. (1991). Zur Lebensgeschichte dominanter Copepodenarten (Calanus finmarchicus,
C. glacialis, C. hyperboreus, Metridia longa) in der Framstraße. Reports
on Polar Research 88, 133.
Drobysheva, S. S. (1982). Degree of isolation of Thysanoessa inermis (Kryer) and
Th. raschii (M. Sars) (Crustacea, Euphausiacea) populations in the southern
Barents Sea. International Council for Exploration of the Sea 21CM/1982 L:19, 21.
Dunbar, M. J. (1954). The amphipod crustacea of Ungava Bay, Canadian Eastern
Arctic. Journal of the Fisheries Research Board of Canada 11, 709–798.
Dunton, K. H., Reimnitz, E. and Schonberg, S. (1982). An arctic kelp community in
the Alaskan Beaufort Sea. Arctic 35, 464–484.
Duquense, S., Riddle, M. J., Schulz, K. L. and Liess, M. (2000). EVects of contaminants
in the Antarctic environment—potential of the gammarid crustacean
Paramoera walkeri as a biological indicator for Antarctic ecosystems based on
toxicity and bioaccumulation of copper and cadmium. Aquatic Toxicology 49,
131–143.
Eiane, K. and Daase, M. (2002). Observations of mass mortality of Themisto libellula
(Amphipoda, Hyperidae). Polar Biology 25, 396–398.
Eicken, H. and Lange, M. A. (1989). Development and properties of sea ice in the
coastal regime of the southeastern Weddell Sea. Journal of Geophysical Research
94, 8193–8206.
Einarsson, H. (1945). Euphausiacea. I. Northern Atlantic species. Dana Report
No. 27.
El-Sayed, S. Z. (1971). Biological aspects of the pack ice ecosystem. In ‘‘Symposium
on Antarctic Ice and Water Masses’’ (G. E. R. Deacon, ed.), pp. 35–54. Scientific
Committee on Antarctic Research, Cambridge.
Evans, F. (1977). Seasonal density and production estimates of the commoner
planktonic copepods of Northumberland coastal waters. Estuarine and Coastal
Marine Science 5, 223–241.
Everson, I. (2000). ‘‘Krill: Biology, Ecology and Fisheries’’ Blackwell, Oxford.
Falk-Petersen, S., Sargent, J. R. and Tande, K. (1987). Food pathways and life
strategy in relation to the lipid composition of sub-Arctic zooplankton. Polar
Biology 8, 115–120.
Falk-Petersen, S., Hopkins, C. and Sargent, J. R. (1990). Trophic relationships in the
pelagic, Arctic food web. In ‘‘Trophic Relationships in the Marine Environment’’
(M. Barnes and R. N. Gibson, eds), ‘‘Proceedings of the 24th European Marine
Biological Symposium’’, pp. 315–333. Aberdeen University Press, Aberdeen.
300 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Falk-Petersen, S., Hagen, W., Kattner, G., Clarke, A. and Sargent, J. R. (2000).
Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill.
Canadian Journal of Fisheries and Aquatic Science 57, 179–191.
Feder, H. M. and Lewett, S. C. (1981). Feeding interaction in the eastern Bering Sea
with emphasis on the benthos. In ‘‘The eastern Bering Sea shelf: Oceanography and
Resources, Vol. II’’ (D. W. Hood and J. Calder, eds), pp. 1229–1261. University of
Washington Press, Seattle.
Fortier, L., Fortier, M. and Demers, S. (1995). Zooplankton and larval fish community
development: Comparative study under first-year sea ice at low and high
latitudes in the northern hemisphere. Proceedings of the NIPR Symposium on
Polar Biology 8, 11–19.
Fortier, M., Fortier, L., Hattori, H., Saito, H. and Legendre, L. (2001). Visual
predators and the diel vertical migration of copepods under Arctic sea ice during
the midnight sun. Journal of Plankton Research 23, 1263–1278.
Foster, B. A. (1987). Composition and abundance of zooplankton under the spring
sea-ice of McMurdo Sound, Antarctica. Polar Biology 8, 41–48.
Fransz, H. G. (1988). Vernal abundance, structure and development of epipelagic
copepod populations of the eastern Weddell Sea (Antarctica). Polar Biology 9,
107–114.
Fraser, W. R. and Hofmann, E. E. (2003). A predator’s perspective on causal links
between climate change, physical forcing and ecosystem response. Marine Ecology
Progress Series 265, 1–15.
Frazer, T. K., Quetin, L. B. and Ross, R. M. (2002). Abundance, sizes and development
of larval krill, Euphausia superba, during winter in ice-covered seas west of
the Antarctic Peninsula. Journal of Plankton Research 24, 1067–1077.
Friedrich, C. (1997). O ¨ kologische Untersuchungen zur Fauna des arktischen Meereises
(Ecological investigations on the fauna of the Arctic sea-ice). Berichte zur
Polarforschung 246, 211.
Gallienne, C. P. and Robins, D. B. (2001). Is Oithona the most important copepod in
the world’s oceans. Journal of Plankton Research 23, 1421–1432.
Garrison, D. L. (1991). Antarctic sea ice biota. American Zoologist 31, 17–33.
Garrison, D. L. and Buck, K. R. (1989). The biota of Antarctic pack ice in the
Weddell Sea and Antarctic Peninsula regions. Polar Biology 10, 211–219.
George, R. Y. and Paul, A. Z. (1970). ‘‘USC-FSU-Biological Investigations from
the Fletcher’s Ice Island T-3 on Deep-Sea and Under-Ice Benthos of the Arctic
Ocean’’. University of Southern California, Department of Biological Sciences,
Los Angeles.
Gibson, J. A. E., Swadling, K. M. and Burton, H. R. (1997). Interannual variation in
dominant phytoplankton species and biomass near Davis Station, East Antarctica.
Proceedings of the NIPR Symposium on Polar Biology 10, 78–90.
Gloersen, P., Campbell, W. J., Cavalieri, D., Comiso, J. C., Parkinson, C. L. and
Zwally, H. J. (1993). Satellite passive microwave observations and analysis of
arctic and Antarctic sea ice, 1978–1987. Annals of Glaciology 17, 149–154.
Golikov, A. N. and Averintzev, V. G. (1977). Distribution patterns of benthic and ice
biocoenoses in the high latitudes of the Polar Basin and their part in the biological
structure of the world ocean. In ‘‘Polar Oceans’’ (M. J. Dunbar, ed.), pp. 331–364.
Arctic Institute of North America, Canada.
Golikov, A. N. and Scarlato, O. A. (1973). Comparative characteristics of some
ecosystems of the upper regions of the shelf in tropical, temperate and Arctic
waters. Helgola¨nder Wissenschaftliche Meeresuntersuchungen 24, 219–234.
SEA ICE CRUSTACEA 301
Gonzalez, H. and Smetacek, V. (1994). The possible role of the cyclopoid copepod
Oithona in retarding vertical flux of zooplankton material. Marine Ecology Progress
Series 113, 233–246.
Gradinger, R. (1999). Integrated abundance and biomass of sympagic meiofauna in
Arctic and Antarctic pack ice. Polar Biology 22, 169–177.
Gradinger, R. and Bluhm, B. (2004). In-situ observations on the distribution and
behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the
High Arctic Canada Basin. Polar Biology 27, 595–603.
Gradinger, R., Spindler, M. and Henschel, D. (1991). Development of Arctic sea ice
organisms under graded snow cover. Polar Research 10, 295–307.
Gradinger, R., Spindler, M. and Weissenberger, J. (1992). On the structure
and development of Arctic pack ice communities in Fram Strait: A multivariate
approach. Polar Biology 12, 727–733.
Gradinger, R., Friedrich, C. and Spindler, M. (1999). Abundance, biomass and
composition of the sea ice biota of the Greenland Sea pack ice. Deep-Sea Research
II 46, 1457–1472.
Gradinger, R., Meiners, K., Plumley, G., Zhang, Q. and Bluhm, B. A. (2005).
Abundance and composition of the sea-ice meiofauna in oV-shore pack ice of the
Beaufort Gyre in summer 2002 and 2003. Polar Biology 28, 171–181.
Graeve, M., Kattner, G. and Piepenburg, D. (1997). Lipids in Arctic benthos: Does
the fatty acid and alcohol composition reflect feeding and trophic interactions.
Polar Biology 18, 53–61.
Grainger, E. H. (1962). Zooplankton of the Foxe Basin in the Canadian Arctic.
Journal of the Fisheries Research Board of Canada 19, 377–400.
Grainger, E. H. and Hsiao, S. I. C. (1990). Trophic relationships of the sea ice
meiofauna in Frobisher Bay, Arctic Canada. Polar Biology 10, 283–292.
Grainger,E.H. andMohammed, A. A. (1986).Copepods in arctic sea ice. In ‘‘Proceedings
of the second International Conference on Copepoda’’ (G. Schiever, H. K. Schminke
and C.-T. Shih, eds), pp. 303–310. NationalMuseums of Canada, Ottawa.
Grainger, E. H. and Mohammed, A. A. (1990). High salinity tolerance in sea ice
copepods. Ophelia 31, 177–185.
Grainger, E. H. and Mohammed, A. A. (1991). Some diagnostic characters of
copepodid stages of the cyclopoid copepod Cyclopina schneideri T. Scott
and adults of arctic marine Cyclopinidae. Canadian Journal of Zoology 69,
2365–2373.
Grainger, E. H., Mohammed, A. A. and Lovrity, J. E. (1985). The sea ice fauna of the
Frobisher Bay, Arctic Canada. Arctic 38, 23–30.
Green, J. M. and Steele, D. H. (1977). ‘‘Observations on Marine Life Beneath Sea
Ice, Resolute Bay, N.W.T. Proceedings of the Circumpolar Conference on Northern
Ecology, Ottawa, 1975’’. National Research Council Canada.
GriYths, W. B. and Dillinger, R. E. (1981). Invertebrates. In ‘‘Environmental Assessment
of the Alaskan Continental Shelf’’. Final reports of principal investigators,
Vol. 8. Biological studies.
Grnvik, W. and Hopkins, C. C. E. (1984). Ecological investigations of the
zooplankton community of Balsfjorden, Northern Norway: Generation cycle,
seasonal vertical distribution, and seasonal variations in body weight and carbon
and nitrogen content of the copepod Metridia longa (Lubbock). Journal of Experimental
Marine Biology and Ecology 80, 93–107.
Gruzov, E. N. (1977). Seasonal alterations in coastal communities in the Davis Sea.
In ‘‘Adaptations within Antarctic Ecosystems’’ (G. A. Llano, ed.), pp. 263–278.
Gulf Publishing Co., Houston.
302 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Gruzov, Y. N., Propp, M. V. and Pushkin, A. F. (1967). Biological associations of
coastal areas of the Davis Sea (based on the observations of divers). Soviet
Antarctic Expedition Information Bulletin 6, 523–533.
Gruzov, Y. N., Propp, M. V. and Pushkin, A. F. (1968). Hydrobiological
diving work in the Antarctic. Soviet Antarctic Expedition Information Bulletin 6,
405–408.
Gulliksen, B. (1984). Under-ice fauna from Svalbard waters. Sarsia 69, 17–23.
Gulliksen, B. and Lnne, O. J. (1989). Distribution, abundance, and ecological
importance of marine sympagic fauna in the Arctic. Rapports et Proce`s-Verbaux
des Re´unions, International Council for the Exploration of the Sea 188, 133–138.
Gulliksen, B. and Lnne, O. J. (1991). Sea ice macrofauna in the Antarctic and the
Arctic. Journal of Marine Systems 2, 53–61.
Gulliksen, B., Palerud, R., Brattegard, T. and Sneli, J.-A. (1999). ‘‘Distribution
of marine benthic macro-organisms at Svalbard (including Bear Island) and Jan
Mayen’’, Research Report for DN 1999-4. Directorate for Nature Management.
Gu¨nther, S., George, K. H. and Gleitz, M. (1999). High sympagic metazoan abundance
in platelet layers at Drescher Inlet, Weddell Sea, Antarctica. Polar Biology
22, 82–89.
Gurjanova, E. (1936). Beitra¨ge zur Amphipodenfauna des Karischen Meeres.
Zoologischer Anzeiger 116, 145–152.
Gurjanova, E. F. (1951). ‘‘Beach Hoppers of the Seas of the USSR and Adjacent
Waters (Amphipoda: Gammaridea)’’. Fauna USSR, Academy of Science of the
USSR, Moscow.
Hagen, W. (1988). Zur Bedeutung der Lipide im antarktischen Zooplankton (on the
significance of lipids in Antarctic zooplankton). Berichte zur Polarforschung 49,
1–129.
Hagen, W. and Schnack-Schiel, S. B. (1996). Seasonal lipid dynamics in dominant
Antarctic copepods: Energy for overwintering or reproduction? Deep-Sea Research I
43, 139–158.
Hagen, W., Kattner, G. and Graeve, M. (1993). Calanoides acutus and Calanus
propinquus, Antarctic copepods with diVerent lipid storage modes via wax esters
or triacylglycerols. Marine Ecology Progress Series 97, 135–142.
Hagen, W., Kattner, G., Terbru¨ggen, A. and VanVleet, E. S. (2001). Lipid metabolism
of the Antarctic krill Euphausia superba. Marine Biology 139, 95–104.
Hall, M. O. and Bell, S. S. (1993). Meiofauna on the seagrass Thalassia testudinum—
population characteristics of harpacticoid copepods and associations with algal
epiphytes. Marine Biology 116, 137–146.
Hamner, W. M., Hamner, P. P., Strand, S. W. and Gilmer, R. W. (1983). Behaviour
of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and
molting. Science 220, 433–435.
Hamner, W. M., Hamner, P. P., Obst, B. S. and Carleton, J. H. (1989). Field
observations on the ontogeny of schooling of Euphausia superba furciliae and its
relationship to ice in Antarctic waters. Limnology and Oceanography 34, 451–456.
Harrington, S. A. and Thomas, P. G. (1987). Observations on spawning by Euphausia
crystallorophias from waters adjacent to Enderby Land (East Antarctica) and
speculations on the early ontogenetic ecology of neritic euphausiids. Polar Biology
7, 93–95.
Hempel, I and Hempel, G. (1986). Field observations on the developmental ascent of
larval Euphausia superba (Crustacea). Polar Biology 6, 121–126.
Herman, Y. and Hopkins, D. (1980). Arctic Ocean climate in late Cenozoic time.
Science 209, 557–562.
SEA ICE CRUSTACEA 303
Hicks, G. and Coull, B. (1983). The ecology of marine meiobenthic harpacticoid
copepods. Oceanography and Marine Biology: An Annual Review 21, 67–175.
Hirche, H.-J. (1997). Life cycle of the copepod Calanus hyperboreus in the Greenland
Sea. Marine Biology 128, 607–618.
Hirche, H.-J. and Kattner, G. (1993). Egg production and lipid content of Calanus
glacialis in spring: Indication of a food-dependent and food-independent reproductive
mode. Marine Biology 117, 615–622.
Hirche, H.-J. and NiehoV, B. (1996). Reproduction of the Arctic copepod Calanus
hyperboreus in the Greenland Sea—field and laboratory observations. Polar Biology
16, 209–219.
Hofmann, E. E., Wiebe, P. H., Costa, D. P. and Torres, J. J. (2004). Integrated
ecosystem studies of western Antarctica Peninsula continental shelf waters and
related southern ocean regions. Deep-Sea Research II 51, 1921–2344.
Holloway, G. and Sou, T. (2001). Is Arctic sea ice rapidly thinning? Ice and Climate
News 1. Available online at acsys.npolar.no/news/2001/No1_p2.htm.
Holt, E. W. and Tattersall, W. M. (1906). Preliminary notice of the Schizopoda
collected by H.M.S. Discovery in the Antarctic Region. Annals and Magazine of
Natural History 7, 1–11.
Hop, H., Poltermann, M., Lnne, O. J., Falk-Petersen, S., Krosnes, R. and Budgell,
W. P. (2000). Ice amphipod distribution relative to ice density and under-ice
topography in the northern Barents Sea. Polar Biology 23, 357–367.
Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., Kwasniewski, S.,
Eiane, K., Mehlum, F., Gulliksen, B., Wlodarska-Kowalczuk, M., Lydersen, C.,
Weslawski, J. M., Cochrane, S., Gabrielsen, G. W., Leakey, R. J. G., Lnne, O. J.,
Zajaczkowski, M., Falk-Petersen, S., Kendall, M., Wa¨ngberg, S.-A° ., Bischof, K.,
Voronkov, A. Y., Kovaltchouk, N. A., Wiktor, J., Poltermann, M., die Prisco, G.,
Papucci, C. and Gerland, S. (2002). The marine ecosystem of Kongsfjorden,
Svalbard. Polar Research 21, 167–208.
Hopkins, T. L. (1985). Food web of an Antarctic midwater ecosystem. Marine
Biology 89, 197–212.
Hopkins, T. (1987). Midwater food web in McMurdo Sound, Ross Sea, Antarctica.
Marine Biology 96, 93–106.
Hopkins, C. C. E., Tande, K. S., Gronvik, S. and Sargent, J. R. (1984). Ecological
investigations of the zooplankton community of Balsfjorden, northern Norway:
An analysis of growth and overwintering tactics in relation to niche and environment
in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa
inermis (Kryer) and T. rashi (M. Sars). Journal of Experimental Marine Biology
and Ecology 82, 77–99.
Horner, R. A. (1972). Ecological studies on arctic sea ice organisms. Institute of
Marine Science, University of Alaska, Fairbanks. Report R 72-17.
Horner, R. A. (1985). ‘‘Sea Ice Biota’’. CRC Press, Florida.
Horner, R., Ackley, S. F., Dieckmann, G. S., Gulliksen, B., Hoshiai, T., Legendre, L.,
Melnikov, I. A., Reeburgh, W. S., Spindler, M. and Sullivan, C. W. (1992). Ecology
of sea ice biota 1. Habitat, terminology and methodology. Polar Biology 12,
417–427.
Hoshiai, T. and Tanimura, A. (1986). Sea ice meiofauna at Syowa Station, Antarctica.
Memoirs of the National Institute of Polar Research, Special Issue 44, 118–124.
Hoshiai, T., Tanimura, A. and Watanabe, K. (1987). Ice algae as food of an
Antarctic ice-associated copepod, Paralabidocera antarctica (I. C. Thompson).
Proceedings of the NIPR Symposium on Polar Biology 1, 105–111.
304 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Hoshiai, T., Tanimura, A., Fukuchi, M. and Watanabe, K. (1989). Feeding by the
nototheniid fish, Pagothenia borchgrevinki on the ice-associated copepod, Paralabidocera
antarctica. Proceedings of the National Institute of Polar Research Symposium
on Polar Biology 2, 61–64.
Ikeda, T. (1986). Preliminary observations on the development of the larvae of
Euphausia crystallorophias Holt and Tattersall in the laboratory (extended abstract).
Memoirs of the National Institute of Polar Research Special Issue 40,
183–186.
Ikeda, T. and Dixon, P. (1982). Body shrinkage as a possible over-wintering mechanism
of the Antarctic krill, Euphausia superba Dana. Journal of Experimental
Marine Biology and Ecology 62, 143–151.
Ikeda, T. and Kirkwood, R. (1989). Metabolism and body composition of two
euphausiids (Euphausia superba and E. crystallorophias) collected from under the
pack-ice oV Enderby Land, Antarctica. Marine Biology 100, 301–308.
Ito, T. and Fukuchi, M. (1978). Harpacticus furcatus Lang from the Antarctic
Peninsula, with reference to the copepodid stages (Copepoda: Harpacticoida).
Antarctic Record 61, 40–64.
Johnson, G. L. (1990). Morphology and plate tectonics: The modern polar oceans.
In ‘‘Geological History of the Polar Oceans: Arctic versus Antarctic’’ (U. Bleil and
J. Thiede, eds), pp. 11–28. North Atlantic Treaty Organization, ASI Series C.
Johnson, M. W. and Olson, J. B. (1948). The life history and biology of a marine
harpacticoid copepod, Tisbe furcata (Baird). Biological Bulletin 95, 320–332.
Jones, R. H. and Flynn, K. J. (2005). Nutritional status and diet composition aVect
the value of diatoms as copepod prey. Science 307, 1457–1459.
Ju, S.-J. and Harvey, H. R. (2004). Lipids as markers of nutritional condition and
diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during
austral winter. Deep-Sea Research II 51, 2199–2214.
Kattner, G. and Hagen, W. (1995). Polar herbivorous copepods—diVerent pathways
in lipid biosynthesis. ICES Journal of Marine Science 52, 329–335.
Kattner, G. and Hagen, W. (1998). Lipid metabolism of the Antarctic euphausiid
Euphausia crystallorophias and its ecological implications. Marine Ecology Progress
Series 170, 203–213.
Kattner, G., Graeve, M. and Hagen, W. (1994). Ontogenetic and seasonal changes in
lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods
Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Marine Biology
118, 637–644.
Kattner, G., Albers, C., Graeve, M. and Schnack-Schiel, S. B. (2003). Fatty acid and
alcohol composition of the small polar copepods, Oithona and Oncaea: Indication
on feeding modes. Polar Biology 26, 666–671.
Kawaguchi, S. and Nicol, S. (eds), (2003). Proceedings of the International Workshop
on Understanding Living Krill for Improved Management and Stock Assessment.
Marine and Freshwater Behaviour and Physiology 36, 1–307.
Kern, J. C. and Carey, A. G., Jr. (1983). The faunal assemblage inhabiting seasonal
sea ice in the nearshore Arctic Ocean with emphasis on copepods. Marine Ecology
Progress Series 10, 159–167.
Kirkwood, J. M. (1993). Zooplankton community dynamics and diel vertical migration
in Ellis Fjord, Vestfold Hills, Antarctica. PhD thesis, Monash University,
Victoria, Australia.
Kirkwood, J. M. (1996). The developmental rate of Euphausia crystallorophias larvae
in Ellis Fjord, Vestfold Hills, Antarctica. Polar Biology 16, 527–530.
SEA ICE CRUSTACEA 305
Kirkwood, J. M. and Burton, H. R. (1987). Three new zooplankton nets designed for
under-ice sampling; with preliminary results of collections made from Ellis Fjord,
Antarctica during 1985. Proceedings of the NIPR Symposium on Polar Biology 1,
112–122.
Kittel, W. and Ligowski, R. (1980). Algae found in the food of Euphausia crystallorophias
(Crustacea). Polish Polar Research 1, 129–137.
Klekowski, R. Z., Opalinski, K. W. and Rakusa-Suszczewski, S. (1973). Respiration
of Antarctic amphipoda Paramoera walkeri Stebbing during the winter season.
Polskie Archiwum Hydrobiologii 20, 301–308.
Klekowski, R. Z. and Weslawski, J. M. (1991). ‘‘Atlas of the Marine Fauna of
Southern Spitsbergen’’, Vol. 2, ‘‘Invertebrates, Part I’’. Polish Academy of Science,
Gdansk.
Kotwicki, L. (2002). Benthic Harpacticoida (Crustacea, Copepoda) from the Svalbard
archipelago. Polish Polar Research 23, 185–191.
Krembs, C., Mock, T. and Gradinger, R. (2001). A mesocosm study of physical–
biological interactions in artificial sea ice: EVects of brine channel surface evolution
and brine movement on algal biomass. Polar Biology 24, 356–364.
Krembs, C., Tuschling, K. and Juterzenka, K. V. (2002). The topography of the icewater
interface—its influence on the colonization of sea ice by algae. Polar Biology
25, 106–117.
Kurbjeweit, F. (1993). Reproduktion und Lebenszyklen dominanter Copepodenarten
aus dem Weddellmeer, Antarktis (reproduction and life cycles of dominant
copepod species from the Weddell Sea, Antarctica). Berichte zur Polarforschung
129, 1–238.
Kurbjeweit, F., Gradinger, R. and Weissenberger, J. (1993). The life cycle of Stephos
longipes—an example of cryopelagic coupling in the Weddell Sea (Antarctica).
Marine Ecology Progress Series 98, 255–262.
Lee, R. F. (1975). Lipids of arctic zooplankton. Comparative Biochemistry and
Physiology 51, 263–266.
Liess, M., Champeau, O., Riddle, M. J., Schulz, R. and Duquense, S. (2001).
Combined eVects of ultraviolet-B radiation and food shortage on the sensitivity
of the Antarctic amphipod Paramoera walkeri to copper. Environmental Toxicology
and Chemistry 20, 2088–2092.
Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W. and
Trivelpiece, S. (1997). EVects of sea ice extent and krill or salp dominance on the
Antarctic food web. Nature 387, 897–900.
Lnne, O. J. (1988). A diver-operated electric suction sampler for sympagic (¼ underice)
invertebrates. Polar Research 6, 135–136.
Lnne, O. J. and Gulliksen, B. (1991a). On the distribution of sympagic macro-fauna
in the seasonally ice covered Barents Sea. Polar Biology 11, 457–469.
Lnne, O. J. and Gulliksen, B. (1991b). Sympagic macro-fauna from multiyear seaice
near Svalbard. Polar Biology 11, 471–477.
Lubin, D. and Massom, R. (2005). ‘‘Polar Remote Sensing: Atmosphere and Polar
Oceans’’. Springer Praxis Books, Berlin (Germany) and Chichester (UK).
MacGinitie, G. E. (1955). Distribution and ecology of the marine invertebrates of
Point Barrow, Alaska. Smithsonian Miscellaneous Collection 128, 1–201.
MacLellan, D. C. (1967). The annual cycle of certain calanoid species in West
Greenland. Canadian Journal of Zoology 45, 101–105.
Mangel, M. and Nicol, S. (eds), (2000). Proceedings of the Second International Krill
Symposium, Santa Cruz, California, August 1999. Canadian Journal of Fisheries
and Aquatic Sciences Supplement 3, 1–202.
306 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Marr, J. W. S. (1962). The natural history and geography of the Antarctic krill
(Euphausia superba Dana). Discovery Reports 32, 33–464.
Marschall, H.-P. (1988). The overwintering strategy of Antarctic krill under the packice
of the Weddell Sea. Polar Biology 9, 129–135.
Matthews, J. B. L., Hestad, L. and Bakke, J. L. W. (1978). Ecological studies in
Korsfjorden, Western Norway. The generations and stocks of Calanus hyperboreus
and C. finmarchicus in 1971–1974. Oceanologica Acta 1, 277–284.
Mauchline, J. (1998). The biology of calanoid copepods. Advances in Marine Biology
33, 1–710.
Maykut, G. A. (1985). The ice environment. In ‘‘Sea Ice Biota’’ (R. A. Horner, ed.),
pp. 21–82. CRC Press, Florida.
Mayzaud, P., Albessard, E. and Cuzin-Roudy, J. (1998). Changes in lipid composition
of the Antarctic krill Euphausia superba in the Indian sector of the Antarctic
Ocean: Influence of geographical location, sexual maturity stage and distribution
among organs. Marine Ecology Progress Series 173, 149–162.
McAllen, R. and Block,W. (1997). Aspects of the cryobiology of the intertidal harpacticoid
copepod Tigriopus brevicornis (O. F. Mu¨ ller). Cryobiology 35, 309–317.
McConville, M. J., Mitchell, C. and Wetherbee, R. (1985). Patterns of carbon
assimilation in a microalgal community from annual sea ice, East Antarctica.
Polar Biology 4, 135–141.
McGrath-Grossi, S., Kottmeier, S. T., Mo, R. L., Taylor, G. T. and Sullivan, C. W.
(1987). Sea ice microbial communities. VI. Growth and primary production in
bottom ice under graded snow cover. Marine Ecology Progress Series 35, 153–164.
McLaren, I. A. (1969). Population and production ecology of zooplankton in Ogac
Lake, a landlocked fjord on BaYn Island. Journal of the Fisheries Research Board
of Canada 26, 1485–1559.
Melnikov, I. A. (1989). Ecology of Arctic Ocean cryopelagic fauna. In ‘‘The Arctic
Seas—Climatology, Oceanography, Geology and Biology’’ (Y. E. Hermann, ed.),
pp. 235–256. Van Nostrand Reinhold, New York.
Melnikov, I. A. (1997). ‘‘The Arctic Sea Ice Ecosystem’’. Gordon and Breach Science
Publishers, Amsterdam.
Melnikov, I. A. and Kulikov, A. S. (1980). The cryopelagic fauna of the central
Arctic Basin. In ‘‘Biology of the Central Arctic Basin’’ (M. E. Vinogradov and I. A.
Melnikov, eds), pp. 97–111. Nauka, Moscow.
Melnikov, I. A. and Spiridonov, V. A. (1996). Antarctic krill under perennial sea ice
in the western Weddell Sea. Antarctic Science 8, 323–329.
Melnikov, I. A., Zhitina, L. S. and Kolosova, H. G. (2001). The Arctic sea ice
biological communities in recent environmental changes. Memoirs of the National
Institute of Polar Research 54, 409–416.
Melnikov, I. A., Kolosova, E. G., Welch, H. E. and Zhitina, L. S. (2002). Sea ice
biological communities and nutrient dynamics in the Canada Basin of the Arctic
Ocean. Deep-Sea Research I 49, 1623–1649.
Menshenina, L. L. and Melnikov, I. A. (1995). Under-ice zooplankton of the western
Weddell Sea. Polar Biology 8, 126–138.
Metz, C. (1995). Seasonal variation in the distribution and abundance of Oithona and
Oncaea species (Copepoda, Crustacea) in the southeastern Weddell Sea, Antarctica.
Polar Biology 15, 187–194.
Metz, C. (1996). Lebensstrategien dominanter antarktischer Oithonidae (Cyclopoida,
Copepoda) und Oncaeidae (Poecilostomatoida, Copepoda) im Bellingshausenmeer.
(Life strategies of dominant Antarctic Oithonidae (Cyclopoida, Copepoda)
SEA ICE CRUSTACEA 307
and Oncaeidae (Poecilostomatoida, Copepoda) in the Bellingshausen Sea).
Berichte zur Polarforschung 207, 1–109.
Metz, C. (1998). Feeding of Oncaea curvata (Poecilostomatoida, Copepoda). Marine
Ecology Progress Series 169, 229–235.
Metz, C. and Schnack-Schiel, S. B. (1995). Observations on carnivorous feeding in
Antarctic calanoid copepods. Marine Ecology Progress Series 129, 71–75.
Meyer, B. and Oettl, B. (2005). EVects of short-term starvation on composition and
metabolism of larval Antarctic krill Euphausia superba. Marine Ecology Progress
Series 292, 263–270.
Meyer, B., Atkinson, A., Stu¨bing, D., Oettl, B., Hagen, W. and Bathmann, U. V.
(2002). Feeding and energy budgets of Antarctic krill Euphausia superba at
the onset of winter—I. Furcilia III larvae. Limnology and Oceanography 47,
943–952.
Michel, C., Nielsen, T. G., Nozais, C. and Gosselin, M. (2002). Significance of
sedimentation and grazing by ice micro- and meiofauna for carbon cycling in
annual sea ice (northern BaYn Bay). Aquatic Microbial Ecology 30, 57–68.
Michels, J. and Schnack-Schiel, S. B. (2005). Feeding in dominant Antarctic copepods—
does the morphology of the mandibular gnathobases relate to diet? Marine
Biology 146, 483–495.
Mohr, J. L. and Tibbs, J. (1963). Ecology of ice substrates. In ‘‘Proceedings of the
Arctic Basin Symposium, October 1962’’, pp. 245–248. Arctic Institute of North
America.
Montagna, P. A. and Carey, A. G., Jr. (1978). Distributional notes on Harpacticoida
(Crustacea: Copepoda) collected from the Beaufort Sea (Arctic Ocean). Astarte 11,
117–122.
Mueller, D. R., Vincent, W. F. and JeVries, M. O. (2003). Break-up of the largest
Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters
30(20), 2031.
Mumm, N. (1991). Zur sommerlichen Verteilung des Mesozooplanktons im Nansen-
Becken, Nordpolarmeer. Berichte zur Polarforschung 154, 1–90.
Nansen, F. (1897). ‘‘Furthest North’’. Archibald Constable &amp; Co., London.
Nicol, S. (1995). Krill, Antarctic. In ‘‘Encyclopedia of Environmental Biology’’
(W. Nierenberg, ed.), pp. 389–402. Academic Press, San Diego.
Nicol, S., Pauly, T., BindoV, N. L., Wright, S., Thiele, D., Hosie, G. W., Strutton,
P. G. and Woehler, E. (2000a). Ocean circulation oV east Antarctica aVects
ecosystem structure and sea-ice extent. Nature 406, 504–507.
Nicol, S., Kitchener, J., King, R., Hosie, G. W. and de la Mare, W. K. (2000b).
Population structure and condition of Antarctic krill (Euphausia superba) oV East
Antarctica (80–150E) during the austral summer of 1995/96. Deep-Sea Research II
47, 2489–2518.
Nicol, S., Virtue, P., King, R., Davenport, S. R., McGaYn, A. F. and Nichols, P.
(2004). Condition of Euphausia crystallorophias oV East Antarctica in winter in
comparison to other seasons. Deep-Sea Research II 51, 2215–2224.
NiehoV, B., Schnack-Schiel, S., Cornils, A. and Brichta, M. (2002). Reproductive
activity of two dominant Antarctic copepod species, Metridia gerlachei and Ctenocalanus
citer, in late autumn in the eastern Bellingshausen Sea. Polar Biology 25,
583–590.
Nordhausen, W. (1994). Winter abundance and distribution of Euphausia superba,
E. crystallorophias, and Thysanoessa macrura in Gerlache Strait and Crystal
Sound, Antarctica. Marine Ecology Progress Series 109, 131–142.
308 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Norrbin, M. F., Olsen, R.-E. and Tande, K. S. (1990). Seasonal variation in lipid
class and fatty acid composition of two small copepods in Balsfjorden, northern
Norway. Marine Biology 105, 205–211.
Nozais, C., Gosselin, M., Michel, C. and Tita, G. (2001). Abundance, biomass,
composition and grazing impact of the sea-ice meiofauna in the North Water,
northern BaYn Bay. Marine Ecology Progress Series 217, 235–250.
O’Brien, D. P. (1987). Direct observations of the behaviour of Euphausia superba and
Euphausia crystallorophias (Crustacea: Euphausiacea) under pack ice during the
Antarctic spring of 1985. Journal of Crustacean Biology 7, 437–448.
O ´
lafsson, E., Ingo´ lfsson, A. and Steinarsdo´ ttir, M. B. (2001). Harpacticoid copepod
communities of floating seaweed: Controlling factors and implications for dispersal.
Hydrobiologia 453/454, 189–200.
Opalinski, K. W. (1974). Standard, routine and active metabolism of the Antarctic
amphipod—Paramoera walkeri Stebbing. Polskie Archiwum Hydrobiologii 21,
423–429.
PaVenho¨ fer, G.-A. (2002). An assessment of the eVects of diatoms on planktonic
copepods. Marine Ecology Progress Series 227, 305–310.
Pakhomov, E. and Perissinotto, R. (1996). Antarctic neritic krill Euphausia crystallorophias:
Spatio-temporal distribution, growth and grazing rates. Deep Sea Research
I 43, 59–87.
Palmisano, A. C. and Sullivan, C. W. (1983). Sea ice microbial communities
(SIMCO). 1. Distribution, abundance, and primary production of ice microalgae
in McMurdo Sound, Antarctica in 1980. Polar Biology 2, 171–177.
Parkinson, C. L. (2000). Variability of Arctic sea ice: The view from space, an 18-year
record. Arctic 53, 341–358.
Pasternak, A. F. and Schnack-Schiel, S. B. (2001). Feeding patterns of dominant
Antarctic copepods: An interplay of diapause, selectivity, and availability of food.
Hydrobiologia 453/454, 25–36.
Pavshtiks, E. A. (1980). About some regularities in plankton life of the central Arctic
Ocean. In ‘‘Biology of the Central Arctic Basin’’ (M. E. Vinogradov and I. E.
Melnikov, eds), pp. 142–154. Nauka, Moscow.
Perissinotto, R., Gurney, L. and Pakhomov, E. A. (2000). Contribution of heterotrophic
material to diet and energy budget of Antarctic krill, Euphausia superba.
Marine Biology 136, 129–135.
Pike, D. G. and Welch, H. E. (1990). Spatial and temporal distribution of sub-ice
macrofauna in the Barrow Strait area, Northwest Territories. Canadian Journal of
Fisheries and Aquatic Sciences 47, 81–91.
Pohnert, G. (2005). Diatom/copepod interactions in plankton: The indirect chemical
defense of unicellular algae. ChemBioChem 6, 946–959.
Poltermann, M. (1997). Biologische und o¨kologische Untersuchungen zur kryopelagischen
Amphipodenfauna des arktischen Meereises. Berichte zur Polarforschung
225, 170.
Poltermann, M. (1998). Abundance, biomass and small-scale distribution of cryopelagic
amphipods in the Franz Josef Land area (Arctic). Polar Biology 20, 134–138.
Poltermann, M. (2000). Growth, production and productivity of the Arctic
sympagic amphipod Gammarus wilkitzkii. Marine Ecology Progress Series 193,
109–116.
Poltermann, M. (2001). Arctic sea ice as feeding ground for amphipods—food
sources and strategies. Polar Biology 24, 89–96.
SEA ICE CRUSTACEA 309
Poltermann, M., Hop, H. and Falk-Petersen, S. (2000). Life under Arctic sea ice—
reproduction strategies of two sympagic (ice–associated) amphipod species,
Gammarus wilkitzkii and Apherusa glacialis. Marine Biology 136, 913–920.
Proshutinsky, A. Y. and Johnson, M. A. (1997). Two circulation regimes of the winddriven
Arctic Ocean. Journal of Geophysical Research 102, 12493–12514.
Quetin, L. B. and Ross, R. M. (2003). Episodic recruitment in Antarctic krill
Euphausia superba in the Palmer LTER study region. Marine Ecology Progress
Series 259, 185–200.
Rakusa-Suszczewski, S. (1972). The biology of Paramoera walkeri Stebbing (Amphipoda)
and the Antarctic sub-fast ice community. Polskie Archiwum Hydrobiologii
19, 11–36.
Rakusa-Suszczewski, S. (1982). The biology and metabolism of Orchomene plebs
(Hurley, 1965) (Amphipoda: Gammaridea) from McMurdo Sound, Ross Sea,
Antarctica. Polar Biology 1, 47–54.
Rakusa-Suszczewski, S. and Dominas, H. (1974). Chemical composition of the
Antarctic amphipoda Paramoera walkeri Stebbing and chromatographic analysis
of its lipids. Polskie Archiwum Hydrobiologii 21, 261–268.
Rakusa-Suszczewski, S. and Klekowski, R. Z. (1973). Biology and respiration of the
Antarctic amphipoda (Paramoera walkeri Stebbing) in the summer. Polskie Archiwum
Hydrobiologii 20, 475–488.
Ray, C. (1966). Stalking seals under Antarctic ice. Geographic Magazine, London 129,
54–65.
Razouls, S., Razouls, C. and de Bove´e, F. (2000). Biodiversity and biogeography of
Antarctic copepods. Antarctic Science 12, 343–362.
Reid, K. and Croxall, J. P. (2001). Environmental response of upper trophic-level
predators reveals a system change in an Antarctic marine ecosystem. Proceedings
of the Royal Society of London B 268, 377–384.
Reimnitz, E., Clayton, J. J., Kempema, E. W., Payne, J. R. and Weber, W. S. (1993).
Interaction of rising frazil with suspended particles: Tank experiments with application
to nature. Cold Regions Science Technology 21, 117–135.
Richardson, M. G. and Whitaker, T. M. (1979). An Antarctic fast-ice food chain:
Observations on the interaction of the amphipod Pontogeneia antarctica Chevreux
with ice-associated micro-algae. British Antarctic Survey Bulletin 47, 107–115.
Rigor, I. G., Wallace, J. M. and Colony, R. L. (2002). On the response of sea ice to
the Arctic Oscillation. Journal of Climate 15, 2648–2668.
Ross, J. C. (1847). ‘‘A Voyage of Discovery and Research in the Southern and
Antarctic Regions’’. John Murray, London.
Ross, R. M. and Quetin, L. B. (1982). Euphausia superba: Fecundity and physiological
ecology of its eggs and larvae. Antarctic Journal of the United States 17,
166–167.
Ross, R. M. and Quetin, L. B. (1986). How productive are Antarctic krill? BioScience
36, 264–269.
Ross, R. M. and Quetin, L. B. (1989). Energetic cost to develop to the first feeding
stage of Euphausia superba Dana and the eVect of delays in food availability.
Journal of Experimental Marine Biology and Ecology 133, 103–127.
Ross, R. M., Quetin, L. B., Newberger, T. and Oakes, S. A. (2004). Growth and
behaviour of larval krill (Euphausia superba) under the ice in late winter 2001 west
of the Antarctic Peninsula. Deep-Sea Research II 51, 2169–2184.
Rothrock, D. A., Yu, Y. and Maykut, G. A. (1999). Thinning of the Arctic ice cover.
Geophysical Research Letters 26, 3469–3472.
310 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Runge, J. A. and Ingram, R. G. (1988). Underice grazing by planktonic, calanoid
copepods in relation to a bloom of ice microalgae in southeastern Hudson Bay.
Limnology and Oceanography 33, 280–286.
Runge, J. A. and Ingram, R. G. (1991). Under-ice feeding and diel migration by the
planktonic copepods Calanus glacialis and Pseudocalanus minutus in relation to
the ice algal production cycle in southeastern Hudson Bay. Marine Biology 108,
217–226.
Sagar, P. M. (1980). Life cycle and growth of the Antarctic gammarid amphipod
Paramoera walkeri (Stebbing, 1906). Journal of the Royal Society of New Zealand
10, 259–270.
Sakshaug, E. and Walsh, J. (2000). Marine biology: Biomass, productivity distributions
and their variability in the Barents and Bering Seas. In ‘‘The Arctic: Environment,
People and Policy’’ (M. Nuttall and T. V. Callaghan, eds), pp. 163–196.
Harwood Academic Publications, Amsterdam.
Sainte-Marie, B. (1992). Foraging of scavenging deep-sea lysianassoid amphipods.
In ‘‘Deep-Sea Food Chains and the Global Carbon Cycle’’ (G. T. Rowe and
V. Pariente, eds), pp. 105–124. Kluwer Academic Publishers, Netherlands.
Sargent, J. R. and Falk-Petersen, S. (1988). The lipid biochemistry of calanoid
copepods. Hydrobiologia 167/168, 101–114.
Sars, G. O. (1900). Crustacea. In ‘‘The Norwegian North Pole Expedition 1893–1896,
Scientific Research’’ (F. Nansen, ed.), Vol. 1, pp. 1–137. Bergen Museum, Bergen.
Schizas, N. V. and Shirley, T. C. (1996). Seasonal changes in structure of an Alaskan
intertidal meiofaunal assemblage. Marine Ecology Progress Series 133, 115–124.
Schmidt, K.,Atkinson, A., Stu¨bing,D.,McClelland, J.W.,Montoya, J. P. andVoss, M.
(2003). Trophic relationships among Southern Ocean copepods and krill: Some uses
and limitations of a stable isotope approach. Limnology and Oceanography 48,
277–289.
Schnack-Schiel, S. B. (2001). Aspects of the study of the life cycles of Antarctic
copepods. Hydrobiologia 453/454, 9–24.
Schnack-Schiel, S. B. (2002). The macrobiology of sea ice. In ‘‘Sea Ice: An Introduction
to Its Physics, Chemsitry, Biology and Ecology’’ (D. N. Thomas and G. S.
Dieckmann, eds), pp. 211–239. Blackwell Publishing, Oxford.
Schnack-Schiel, S. B. and Hagen, W. (1994). Life cycle strategies and seasonal
variations in distribution and population structure of four dominant calanoid
copepod species in the eastern Weddell Sea, Antarctica. Journal of Plankton
Research 16, 1543–1566.
Schnack-Schiel, S. B. and Mizdalski, E. (1994). Seasonal variations in distribution
and population structure of Microcalanus pygmaeus and Ctenocalanus citer (Copepoda:
Calanoida) in the eastern Weddell Sea. Marine Biology 119, 357–366.
Schnack-Schiel, S. B., Hagen, W. and Mizdalski, E. (1991). A seasonal comparison of
Calanoides acutus and Calanus propinquus (Copepoda, Calanoida) in the eastern
Weddell Sea, Antarctica. Marine Ecology Progress Series 70, 17–27.
Schnack-Schiel, S. B., Thomas, D. N., Dieckmann, G. S., Eicken, H., Gradinger, R.,
Spindler, M., Weissenberger, J., Mizdalski, E. and Beyer, K. (1995). Life cycle
strategy of the Antarctic calanoid copepod Stephos longipes. Progress in Oceanography
36, 45–75.
Schnack-Schiel, S. B., Thomas, D. N., Dahms, H.-U., Haas, C. and Mizdalski, E.
(1998). Copepods in Antarctic sea ice. Antarctic Research Series 73, 173–182.
Schnack-Schiel, S. B., Dieckmann, G. S., Gradinger, R., Melnikov, I. A., Spindler, M.
and Thomas, D. N. (2001a). Meiofauna in sea ice of the Weddell Sea (Antarctica).
Polar Biology 24, 724–728.
SEA ICE CRUSTACEA 311
Schnack-Schiel, S. B., Thomas, D. N., Haas, C., Dieckmann, G. and Alheit, R.
(2001b). The occurrence of copepods Stephos longipes (Calanoidea) and Drescheriella
glacialis (Harpacticoida) in summer sea ice in the Weddell Sea, Antarctica.
Antarctic Science 13, 150–157.
Scott, C. L., Falk-Petersen, S., Sargent, J. R.,Hop,H., Lnne, O. J. and Poltermann, M.
(1999). Lipids and trophic interactions of ice fauna and pelagic zooplankton in the
marginal ice zone of the Barents Sea. Polar Biology 21, 65–70.
Scott, C. L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J. R. (2000). Lipids and
life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in
late autumn, Kongsfjorden, Svalbard. Polar Biology 23, 510–516.
Scott, C. L., Kwasniewski, S., Falk-Petersen, S. and Sargent, J. (2002). Lipids and
fatty acids in the copepod Jaschnovia brevis (Jaschnov) and in particulates from
Arctic waters. Polar Biology 25, 65–71.
Siegel, V. (1987). Age and growth of Antarctic Euphausiacea (Crustacea) under
natural conditions. Marine Biology 96, 483–495.
Siegel, V. (2000). Krill (Euphausiacea) life history and aspects of population dynamics.
Canadian Journal of Fisheries and Aquatic Sciences 57, 130–150.
Siegel, V. and Loeb, V. (1994). Length and age at maturity of Antarctic krill.
Antarctic Science 6, 479–482.
Siegel, V. and Loeb, V. (1995). Recruitment of the Antarctic krill Euphausia superba
and possible causes for its variability. Marine Ecology Progress Series 123, 45–56.
Siegel, V. and Harm, U. (1996). The composition, abundance, biomass and diversity
of the epipelagic zooplankton communities of the southern Bellingshausen Sea
(Antarctic) with special reference to krill and salps. Archive of Fishery and Marine
Research 44, 115–139.
Siegel, V., Loeb, V. and Groger, J. (1998). Krill (Euphausia superba) density,
proportional and absolute recruitment and biomass in the Elephant Island
region (Antarctic Peninsula) during the period 1977 to 1997. Polar Biology
19, 393–398.
Siferd, T. D., Welch, H. E., Bergmann, M. A. and Curtis, M. F. (1997). Seasonal
distribution of sympagic amphipods near Chesterfield Inlet, N.W.T., Canada.
Polar Biology 18, 16–22.
Skerratt, J. H., Nichols, P. D., McMeekin, T. A. and Burton, H. R. (1995). Seasonal
and inter-annual changes in planktonic biomass and community structure in
eastern Antarctica using signature lipids. Marine Chemistry 51, 93–113.
Smetacek, V. and Nicol, S. (2005). Polar ocean ecosystems in a changing world.
Nature 437, 362–368.
Smith, S. L. (1990). Egg production and feeding by copepods prior to the spring
bloom of phytoplankton in Fram Strait, Greenland Sea. Marine Biology 106,
59–69.
Sreide, J. E., Hop, H., Falk-Petersen, S., Gulliksen, B. and Hansen, E. (2003).
Macrozooplankton communities and environmental variables in the Barents Sea
marginal ice zone in late winter and spring. Marine Ecology Progress Series 263,
43–64.
Spindler, M. (1990). A comparison of Arctic and Antarctic sea ice and the eVects of
diVerent properties on sea ice biota. In ‘‘Geological History of the Polar Oceans:
Arctic versus Antarctic’’ (U. Bleil and J. Thiede, eds), pp. 173–186. Kluwer
Academic Publishers, Netherlands.
Steele, D. H. (1972). Some aspects of the biology of Gammarellus homari (Crustacea,
Amphipoda) in the Northwestern Atlantic. Journal of the Fisheries Research Board
of Canada 29, 1340–1343.
312 CAROLIN E. ARNDT AND KERRIE M. SWADLING
Steele, D. H. and Steele, V. J. (1974). The biology of Gammarus (Crustacea, Amphipoda)
in the northwestern Atlantic. VIII. Geographic distribution of the northern
species. Canadian Journal of Zoology 52, 1115–1120.
Steele, D. H. and Steele, V. J. (1975). The biology of Gammarus (Crustacea, Amphipoda)
in the northwestern Atlantic. IX. Gammarus wilkitzkii Birula, Gammarus
stoerensis Reid, and Gammarus mucronatus Say. Canadian Journal of Zoology 53,
1105–1109.
Steinarsdo´ ttir, M. B., Ingo´ lfsson, A. and O ´ lafsson, E. (2003). Seasonality of harpacticoids
(Crustacea, Copepoda) in a tidal pool in sub-Arctic south-western Iceland.
Hydrobiologia 503, 211–221.
Stepnik, R. (1982). All-year populational studies of Euphausiacea (Crustacea) in the
Admiralty Bay (King George Island, South Shetland Islands, Antarctic). Polish
Polar Research 3, 49–68.
Stevens, C. J., Deibel, D. and Parrish, C. C. (2004). Species-specific diVerences in
lipid composition and omnivory indices in Arctic copepods collected in deep water
during autumn (North Water Polynya). Marine Biology 144, 905–915.
Stockton, W. L. (1982). Scavenging amphipods from under the Ross Ice Shelf,
Antarctica. Deep-Sea Research 29A, 819–835.
Stu¨bing, D. and Hagen, W. (2003). On the use of lipid biomarkers in marine food
web analyses: An experimental case study on the Antarctic krill, Euphausia
superba. Limnology and Oceanography 48, 1685–1700.
Swadling, K. M. (1998). Influence of seasonal ice formation on life cycle strategies of
Antarctic copepods. PhD thesis, University of Tasmania, Hobart, Australia.
Swadling, K. M. (2001). Population structure of two Antarctic ice-associated copepods,
Drescheriella glacialis and Paralabidocera antarctica, in winter sea ice.
Marine Biology 139, 597–603.
Swadling, K. M., Gibson, J. A. E., Ritz, D. A. and Nichols, P. D. (1997a). Horizontal
patchiness in sympagic organisms of the Antarctic fast ice. Antarctic Science 9,
399–406.
Swadling, K. M., Gibson, J. A. E., Ritz, D. A., Nichols, P. D. and Hughes, D. E.
(1997b). Grazing of phytoplankton by copepods in eastern Antarctic waters.
Marine Biology 128, 39–48.
Swadling, K. M., McPhee, A. D. and McMinn, A. (2000a). Spatial distribution of
copepods in fast ice of eastern Antarctica. Polar Bioscience 13, 55–65.
Swadling, K. M., Nichols, P.D, Gibson, J. A. E. and Ritz, D. A. (2000b). Role of lipid
in the life cycles of ice-dependent and ice-independent populations of the copepod
Paralabidocera antarctica. Marine Ecology Progress Series 208, 171–182.
Swadling, K. M., McKinnon, A. D., De’ath, G. and Gibson, J. A. E. (2004). Life
cycle plasticity and diVerential growth and development in marine and lacustrine
populations of an Antarctic copepod. Limnology and Oceanography 49, 644–655.
Tande, K. S. and Henderson, R. J. (1988). Lipid-composition of copepodite stages
and adult females of Calanus glacialis in arctic waters of the Barents Sea. Polar
Biology 8, 333–339.
Tanimura, A., Fukuchi, M. and Ohtsuka, H. (1984a). Occurrence and age composition
of Paralabidocera antarctica (Calanoida, Copepoda) under the fast ice near
Syowa Station, Antarctica. NIPR Special Issue 32, 81–86.
Tanimura, A., Hoshiai, T. and Fukuchi, M. (1996). The life cycle strategy of the iceassociated
copepod, Paralabidocera antarctica (Calanoida, Copepoda), at Syowa
Station, Antarctica. Antarctic Science 8, 257–266.
Tanimura, A., Hoshino, K., Nonaka, Y., Miyamoto, Y. and Hattori, H. (1997).
Vertical distribution of Oithona similis and Oncaea curvata (Cyclopoida,
SEA ICE CRUSTACEA 313
Copepoda) under sea ice near Syowa Station in the Antarctic winter. Proceedings
of the NIPR Symposium on Polar Biology 10, 134–144.
Tanimura, A., Hoshiai, T. and Fukuchi, M. (2002). Change in habitat of the sympagic
copepod Paralabidocera antarctica from fast ice to seawater. Polar Biology 25,
667–671.
Tanimura, A., Minoda, T., Fukuchi, M., Hoshiai, T. and Ohtsuka, H. (1984b).
Swarm of Paralabidocera antarctica (Calanoida, Copepoda) under sea ice near
Syowa Station, Antarctica. Nankyoku Shiryo (Antarctic Record) 82, 12–19.
Thistle, D. (2003). Harpacticoid copepod emergence at a shelf site in summer and
winter: Implications for hydrodynamic and mating hypotheses. Marine Ecology
Progress Series 248, 177–185.
Thomas, D. N. and Dieckmann, G. S. (2003). ‘‘Sea Ice: An introduction to its
Physics, Chemistry, Biology and Geology.’’ Blackwell, Oxford.
Thomas,D.N., Lara,R. J., Haas, C., Schnack-Schiel, S. B., Dieckmann,G. S.,Kattner,
G.,No¨thig, E.-M. andMizdalski, E. (1998). Biological soup within decaying summer
sea ice in the Amundsen Sea, Antarctica. Antarctic Research Series 73, 161–171.
Torres, J. J., Aarset, A. V., Donnelly, J., Hopkins, T. L., Lancraft, T. M. and Ainley,
D. G. (1994a). Metabolism of Antarctic micronektonic Crustacea as a function of
depth of occurrence and season. Marine Ecology Progress Series 113, 207–219.
Torres, J. J., Donnelly, J., Hopkins, T" name="eprints.referencetext" />
<meta content="Arndt, Carolin E. and Swadling, Kerrie M. (2006) Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies. In: Advances in Marine Biology. . Elsevier, pp. 197-315." name="eprints.citation" />
<meta content="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf" name="eprints.document_url" />
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
<meta content="Crustacea in Arctic and Antarctic
Sea Ice: Distribution, Diet and
Life History Strategies" name="DC.title" />
<meta content="Arndt, Carolin E." name="DC.creator" />
<meta content="Swadling, Kerrie M." name="DC.creator" />
<meta content="270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)" name="DC.subject" />
<meta content="This review concerns crustaceans that associate with sea ice. Particular
emphasis is placed on comparing and contrasting the Arctic and Antarctic
sea ice habitats, and the subsequent influence of these environments on the
life history strategies of the crustacean fauna. Sea ice is the dominant feature
of both polar marine ecosystems, playing a central role in physical processes
and providing an essential habitat for organisms ranging in size from viruses to
whales. Similarities between the Arctic and Antarctic marine ecosystems include
variable cover of sea ice over an annual cycle, a light regimen that can extend
from months of total darkness to months of continuous light and a pronounced
seasonality in primary production. Although there are many similarities, there
are also major diVerences between the two regions: The Antarctic experiences
greater seasonal change in its sea ice extent, much of the ice is over very deep
water and more than 80% breaks out each year. In contrast, Arctic sea ice often
covers comparatively shallow water, doubles in its extent on an annual cycle and
the ice may persist for several decades. Crustaceans, particularly copepods and
amphipods, are abundant in the sea ice zone at both poles, either living within the
brine channel system of the ice-crystal matrix or inhabiting the ice–water
interface. Many species associate with ice for only a part of their life cycle,
while others appear entirely dependent upon it for reproduction and development.
Although similarities exist between the two faunas, many diVerences are
emerging. Most notable are the much higher abundance and biomass of Antarctic
copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids,
the high euphausiid biomass in Southern Ocean waters and the lack of any
species that appear fully dependent on the ice. In the Arctic, the ice-associated
fauna is dominated by amphipods. Calanoid copepods are not tightly associated
with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are
nearly absent from the high Arctic. Life history strategies are variable, although
reproductive cycles and life spans are generally longer than those for temperate
congeners. Species at both poles tend to be opportunistic feeders and periods of
diapause or other reductions in metabolic expenditure are not uncommon." name="DC.description" />
<meta content="Elsevier" name="DC.publisher" />
<meta content="Southward, A.J." name="DC.contributor" />
<meta content="Sims, D.W." name="DC.contributor" />
<meta content="2006" name="DC.date" />
<meta content="Book Chapter" name="DC.type" />
<meta content="PeerReviewed" name="DC.type" />
<meta content="application/pdf" name="DC.format" />
<meta content="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf" name="DC.identifier" />
<meta content="http://dx.doi.org/10.1016/S0065-2881(06)51004-1" name="DC.relation" />
<meta content="Arndt, Carolin E. and Swadling, Kerrie M. (2006) Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies. In: Advances in Marine Biology. . Elsevier, pp. 197-315." name="DC.identifier" />
<meta content="http://eprints.utas.edu.au/2164/" name="DC.relation" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/BibTeX/epprod-eprint-2164.bib" title="BibTeX" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject/epprod-eprint-2164.xml" title="OpenURL ContextObject" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject::Dissertation/epprod-eprint-2164.xml" title="OpenURL Dissertation" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/ContextObject::Journal/epprod-eprint-2164.xml" title="OpenURL Journal" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/DC/epprod-eprint-2164.txt" title="Dublin Core" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/DIDL/epprod-eprint-2164.xml" title="DIDL" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/EndNote/epprod-eprint-2164.enw" title="EndNote" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/HTML/epprod-eprint-2164.html" title="HTML Citation" type="text/html; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/METS/epprod-eprint-2164.xml" title="METS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/MODS/epprod-eprint-2164.xml" title="MODS" type="text/xml" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/RIS/epprod-eprint-2164.ris" title="Reference Manager" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Refer/epprod-eprint-2164.refer" title="Refer" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Simple/epprod-eprint-2164text" title="Simple Metadata" type="text/plain" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/Text/epprod-eprint-2164.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
<link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2164/XML/epprod-eprint-2164.xml" title="EP3 XML" type="text/xml" />

  </head>
  <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
    
    <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>




<table width="795" border="0" cellspacing="0" cellpadding="0">
  <tr>
    <td><script language="JavaScript1.2">mmLoadMenus();</script>
      <table border="0" cellpadding="0" cellspacing="0" width="795">
        <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
        <tr>
          <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
          <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
          <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
          <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
        </tr>
        <tr>
          <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
          <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
          <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
          <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
          <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
          <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
          <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
          <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
        </tr>
        <tr>
          <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
          <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
        </tr>
        <tr>
          <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
          <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
          <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
        </tr>
      </table></td>
  </tr>
    <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
      <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
      <td align="right" style="white-space: nowrap">
        <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
          <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
          <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
          <input type="hidden" name="_order" value="bytitle" />
          <input type="hidden" name="basic_srchtype" value="ALL" />
          <input type="hidden" name="_satisfyall" value="ALL" />
        </form>
      </td>
    </tr></table></td></tr>
  <tr>
    <td class="toplinks"><!-- InstanceBeginEditable name="content" -->


<div align="center">
  
  <table width="720" class="ep_tm_main"><tr><td align="left">
    <h1 class="ep_tm_pagetitle">Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies</h1>
    <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Arndt, Carolin E.</span> and <span class="person_name">Swadling, Kerrie M.</span> (2006) <xhtml:em>Crustacea in Arctic and Antarctic Sea Ice: Distribution, Diet and Life History Strategies.</xhtml:em> In: Advances in Marine Biology. . Elsevier, pp. 197-315.</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2164/1/ArndtSwadling_AMB2006.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />2252Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="2707" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1016/S0065-2881(06)51004-1">http://dx.doi.org/10.1016/S0065-2881(06)51004-1</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">This review concerns crustaceans that associate with sea ice. Particular&#13;
emphasis is placed on comparing and contrasting the Arctic and Antarctic&#13;
sea ice habitats, and the subsequent influence of these environments on the&#13;
life history strategies of the crustacean fauna. Sea ice is the dominant feature&#13;
of both polar marine ecosystems, playing a central role in physical processes&#13;
and providing an essential habitat for organisms ranging in size from viruses to&#13;
whales. Similarities between the Arctic and Antarctic marine ecosystems include&#13;
variable cover of sea ice over an annual cycle, a light regimen that can extend&#13;
from months of total darkness to months of continuous light and a pronounced&#13;
seasonality in primary production. Although there are many similarities, there&#13;
are also major diVerences between the two regions: The Antarctic experiences&#13;
greater seasonal change in its sea ice extent, much of the ice is over very deep&#13;
water and more than 80% breaks out each year. In contrast, Arctic sea ice often&#13;
covers comparatively shallow water, doubles in its extent on an annual cycle and&#13;
the ice may persist for several decades. Crustaceans, particularly copepods and&#13;
amphipods, are abundant in the sea ice zone at both poles, either living within the&#13;
brine channel system of the ice-crystal matrix or inhabiting the ice–water&#13;
interface. Many species associate with ice for only a part of their life cycle,&#13;
while others appear entirely dependent upon it for reproduction and development.&#13;
Although similarities exist between the two faunas, many diVerences are&#13;
emerging. Most notable are the much higher abundance and biomass of Antarctic&#13;
copepods, the dominance of the Antarctic sea ice copepod fauna by calanoids,&#13;
the high euphausiid biomass in Southern Ocean waters and the lack of any&#13;
species that appear fully dependent on the ice. In the Arctic, the ice-associated&#13;
fauna is dominated by amphipods. Calanoid copepods are not tightly associated&#13;
with the ice, while harpacticoids and cyclopoids are abundant. Euphausiids are&#13;
nearly absent from the high Arctic. Life history strategies are variable, although&#13;
reproductive cycles and life spans are generally longer than those for temperate&#13;
congeners. Species at both poles tend to be opportunistic feeders and periods of&#13;
diapause or other reductions in metabolic expenditure are not uncommon.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Book Chapter</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version is available online at http://www.sciencedirect.com/</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270702.html">270000 Biological Sciences &gt; 270700 Ecology and Evolution &gt; 270702 Marine and Estuarine Ecology (incl. Marine Ichthyology)</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2164</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr Kerrie Swadling</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">18 Oct 2007 14:00</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2164;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2164">item control page</a></p>
  </td></tr></table>
</div>



    <!-- InstanceEndEditable --></td>
  </tr>
  <tr>
    <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
    <table width="795" border="0" align="left" cellpadding="0" class="footer">
  <tr valign="top">
<td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
</tr>
<tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
      <tr valign="top">
        <td width="68%" class="footer">Authorised by the University Librarian<br />
© University of Tasmania ABN 30 764 374 782<br />
      <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
        <td width="32%"><div align="right">
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
            <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
            </a></p>
        </div></td>
      </tr>
      <tr valign="top">
        <td><p>  </p></td>
        <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
      </tr>
    </table>
    <!-- #EndLibraryItem -->
    <div align="center"></div></td>
  </tr>
</table>

  </body>
</html>